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This handout provides the practitioner a working understanding of
testing metrics often produced by exam and statistical packages. Some
test metrics can help diagnose bad questions, some can help measure
student ability, and some can measure student knowledge and/or
learning.

Understanding test metrics from software programs is surprisingly
difficult. Since 1904,1 educators have been trying to find ever improv- 1 Ross E. Traub. Classical test theory

in historical perspective. Educational
Measurement: Issues and Practices, 16

(4):8–14, 1997. doi: 10.1111/j.1745-
3992.1997.tb00603.x

ing ways of measuring test quality, distractor quality, and therefore,
knowledge or learning. Unfortunately, software packages often in-
clude outdated measures along with more modern measures. This
is often confusing, especially given that measurement disturbance
(error) is rarely provided.

In this document, we will quickly discuss test measurements that
are the most likely to be provided by testing and statistical software.
There are four basic types of test measures: (1) those based on Clas-
sical Test Theory, (2) those based on Item Response Theory, (3) those
based on the Flow of Knowledge or Value-Added Learning, and (4)
rubric-based knowledge measures.

Classical Test Theory (CTT)

Classical Test Theory is based on a relatively basic idea: an exam
score can be thought of as the sum of the true score and error.

S︸︷︷︸
Score

= T︸︷︷︸
True Score

+ E︸︷︷︸
Error

(1)

The true score is the students’ true knowledge of the exam con-
tent. This is a latent variable and thus not directly observable. Error
is anything that can distort the exam’s measure of the students’ true
knowledge; E can be a positive or negative value. This can include
confusing questions, question options that can be removed, or stu-
dent guessing. Therefore, error is intrinsically ‘bad’ in this context as
it adds noise to T. This basic insight results in one of the most com-
mon measures produced by testing software: reliability. Because of
the additive nature of the model, variance is also additive. Therefore,
variance can be described as:

σ2
S = σ2

T + σ2
E (2)
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If we want to measure the ratio of ‘signal to noise,’ we can de-
scribe it as:

ρ =
σ2

T
σ2

T + σ2
E

(3)

Fundamentally, CTT is trying to get at ρ. Unfortunately, there is no
real way to know ρ as neither σ2

T or σ2
E are known. However, there are

multiple estimates of ρ based on different assumptions. The two most
important categories are based on either test-retests or internal validity.
In the case of test-retest, the assessment is given to the same group
of students twice (allowing sufficient time to pass between settings
for the subjects to forget the questions themselves). Then the Pearson
correlation coefficient (i.e. Pearson’s r) is calculated between the two
exams. The basic theory here is that T should be the same for both
exams while E should be different.

Let’s focus on measures of internal validity as possibly the most
common measures generated by exam software. Probably, the most
common measure is Cronbach’s α.2,3 2 Lee J Cronbach. Coefficient alpha

and the internal structure of tests.
Psychometrika, 16(3):297–334, 1951. doi:
10.1007/BF02310555

3 Cronbach’s α appears in the column
‘alpha’ in Canvas’ CSV quiz item
analysis.

Sometimes software programs (e.g.
ExamSoft) will refer to this score as
“KR20.” This is because the α estimates
are often a special case where the items
are dichotomous (no partial credit) –
this was first developed by Kuder and
Richardson.

G Frederic Kuder and Marion W
Richardson. The theory of the es-
timation of test reliability. Psy-
chometrika, 2(3):151–160, 1937. doi:
10.1007/BF02288391

α̂ =
q

q− 1

(
1−

∑
q
i σ2

Si

σ2
S

)
(4)

Where q is the number of items (questions), σ2
Si

is the variance
of item i and σ2

S is the variance of the overall test scores. Notably,
this simply measures the degree to which this particular test item
moves with the rest of the exam. In general, one would expect well-
behaving items to produce a high score (above about 0.6). However,
an α̂ can be too high as well. Given this is as measure of internal
consistency, if one tests the same material throughout the exam, this
would produce a very high α̂ value; that doesn’t mean the test is
good, but it is reliable.

This idea of testing the correlation of items to the overall exam
extends to the item level analysis (discrimination). A primitive, yet
common, metric is based on splitting the sample based on overall
exam performance. For instance, if the overall exam scores are the
vector S, we could split S on the median to create two equally sized
vectors, SH and SL. Specifically looking at item i, Yi|SH

is the percent
of students in the high group who correctly answered item i and Yi|SL

is the percent of students in the low group that correctly answered
item i. Therefore, the index of discrimination can be stated as:

Di = Yi|SH
−Yi|SL

(5)

The split on the median is not the only option. Truman Kelley4 4 Robert L. Ebel. Procedures for the
analysis of classroom tests. Edu-
cational and Psychological Measure-
ment, 14(2):352–364, 1954. doi:
10.1177/001316445401400215

suggested splitting the sample into three groups: 27% on top and
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bottom and discarding the middle 46%.5 Of course the problem with

5 Canvas follows Kelley’s procedure of
splitting the sample into three groups.

this measure is that it isn’t really built from a model and it is sensi-
tive to the split point. A more sophisticated metric of discrimination
is a version of Pearson’s r.6 6 While many testing software packages

include some index of discrimination
(Di), if the platform also includes point
biserial correlation coefficient (rpbi ),
Di should probably be ignored as it is
sensitive to the split points.

rpbi
=

S̄1 − S̄0

σS

√
n1n0

n2 (6)

Where S̄1 is the mean score of the students who correctly an-
swered item i, S̄0 is the mean score of students who did not answer
item i correctly, and n1, n0, and n represents the sample sizes of each
group and the sample as a whole. Most often this is referred to as
simply rpb or the point biserial correlation coefficient.7 If the question 7 Akindi refers to this as their “discrim-

inatory score.” ZipGrade refers to this
as “discriminant factor.” Quick Key
describes this value as “discrimination
analysis.” Canvas and ExamSoft cor-
rectly describe it as the point biserial
correlation coefficient.

is of high quality, one would expect rpbi
> 0.2. An item resulting in

a negative rpbi
value indicates that the students who performed the

best on the assessment overall actually performed worse on this ques-
tion. This would indicate that their increased knowledge is leading
them to select an incorrect answer. In all likelihood, such a question
should be revised.

Item Response Theory (IRT)

CTT’s modeling is rudimentary to say the least. While error is un-
derstood, how that error is occurring is not really expressed. This
results in metrics that are measures of performance rather than latent
traits. The IRT story is of increasingly more sophisticated models to
correctly estimate latent traits. This results in estimates of difficulty,
discrimination, and guessing – many of the same concepts as in CTT.
IRT estimation methods are now routinely included in both open
source software packages (e.g. R, Python) and commercial packages
(e.g. STATA, SAS). IRT estimates are not currently available in test-
ing programs such as Canvas and Akindi. However, especially given
the size of some university classes, there is no reason such metrics
couldn’t be included in the future as the software programs have all
the data necessary to calculate these estimates.

The Rasch or One Parameter Logistic (1PL)

IRT models are built on the concept of a logistic regression (Pr(t) =

1/(1 + e−t)); in essence, expressing answering a question correct a
matter of probability. Rasch realized that he could model a student
correctly answering a particular question as a function of student n’s
ability (θn) and the difficulty of question i (bi). Therefore, the Rasch
model8 can be stated as: 8 Benjamin D. Wright. Solving measure-

ment problems with the rasch model.
Journal of Educational Measurement, 14

(2):97–116, 1977. doi: 10.1111/j.1745-
3984.1977.tb00031.x
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Pr(Xin = 1) =
1

1 + e−(θn−bi)
(7)

Under this model, ability of the student is explicitly modeled
(and estimated) and difficulty is estimated from the data. This model,
however, assumes that all items are equally discriminating. This, of
course, is likely not the case. Therefore, an obvious extension to the
1PL is the Two Parameter Logistic (2PL).

Two Parameter Logistic (2PL)

The 2PL simply adds a discrimination factor (denoted as ai) to the
Rasch model.

Pr(Xin = 1) =
1

1 + e−ai(θn−bi)
(8)

This measure of discrimination is significantly more sophisticated
than what we see in CTT. Nonetheless, there is a connection. Lord9 9 Frederic M Lord. Applications of Item

Response Theory to Practical Testing
Problems. Routledge, 1980

showed that under the assumption that ability (θ) is normally dis-
tributed, ai is a monotonic transform of the point biserial correlation
coefficient (rpbi

). Specifically:

ai ≈
rpbi√

1− r2
pbi

(9)

Three Parameter Logistic (3PL)

The 2PL is the proper estimation strategy when the exam questions
cannot be guessed. However, in the context of multiple choice exams,
all students have some probability of correctly answering a question.
This inflates the ability estimates in the 2PL model for all questions.
As the ability/discrimination is specified linearly, both estimates
can be incorrect when guessing is a substantial percent of correct
responses. Adding a ‘guessing parameter’ (ci) solves this problem:

Pr(Xin = 1) = ci +
1− ci

1 + e−ai(θn−bi)
(10)

Given sufficient data, this is the most accurate means to estimate
the latent parameters in a multiple choice exam setting; most soft-
ware programs producing IRT estimates are using this equation. The
estimates of ai and ci play an important role in diagnosing exam
quality. ci should converge to 1/k (e.g. 25%). When it does not, this
means the question distractors are either confusing or can be elim-
inated by some students. ai can be used to rank the questions from
most discriminating to least (a value below 0.2 is suspect, a value
above one is excellent).
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As there are a number of free parameters in the 3PL, it requires a
large number of observations;10 Han11 suggests fixing the ci parame- 10 R. J. De Ayala. The theory and prac-

tice of item response theory. Guilford
Publications, New York, NY, 2013

11 Kyung T Han. Fixing the c param-
eter in the three-parameter logistic
model. Practical Assessment, Research &
Evaluation, 17(1):1–24, 2012

ter at 1/k to increase the degrees of freedom in smaller datasets. This
should encourage instructors to use nationally-normed exams (such
as the Test of Understanding in College Economics12) as the ci and ai

12 William B Walstad, Michael Watts,
and Ken Rebeck. Test of understanding
in college economics: Examiner’s manual.
Council for Economic Education, New
York, 4th edition, 2007

are population independent.

Flow of Knowledge or Value-Added Learning Models

While CTT and IRT testing models are largely concerned with test
quality and knowledge, educators are often concerned with learn-
ing. The ability factor in the 3PL measures (θn) the student’s abil-
ity/knowledge at the time of the exam. Notably, θn does not indicate
if the student learned the material in response to a treatment (e.g.
class or program) or already knew the material. The simplest, and
still the most common, form of value-added learning score is to sub-
tract the pre-test from the post-test (post-test − pre-test). As this The pre- and post-test percentages

should only include students who took
both exams.

technique measures knowledge at two points in time and calculates
the difference, it is often called the ‘flow of knowledge.’

An approach adopted by some is to treat the pre-test score as
an independent variable in a regression model. For instance, if the Using a regression model to estimate

the impact of teachers, principles, or
an entire institution (e.g. the Collegiate
Learning Assessment or CLA+) is
commonly referenced by the media
as value-added learning. However,
it is just one specific type and use of
value-added learning measurements.

vector post-test contains the students’ post-test scores and pre-test
contains the students’ pre-test scores then:

post-test = α + βX + γpre-test (11)

Instead of assuming that the pre-test has a unit impact on per-
formance, γ allows the pre-test’s impact to vary. This partially con-
trolled for the bounds issue with simply subtracting the pre-test from
the post-test: the upper bound is 1− pre-test. Hake13 addressed this 13 Richard R Hake. Interactive-

engagement versus traditional methods:
A six-thousand-student survey of
mechanics test data for introductory
physics courses. American Journal
of Physics, 66(1):64–74, 1998. doi:
10.1119/1.18809

issue more directly by linearly transforming the difference metric:

post-test− pre-test
1− pre-test

(12)

The Hake gain score is attractive as it re-scales the learning value
to a [0, 1] range; it has been widely adopted in the hard sciences.
However, it treats all learning types as the same. A more recent
approach suggested by Walstad and Wagner14 disaggregates the 14 William B Walstad and Jamie Wagner.

The disaggregation of value-added
test scores to assess learning outcomes
in economics courses. The Journal of
Economic Education, 47(2):121–131, 2016.
doi: 10.1080/00220485.2016.1146104

value-added learning values into four types: positive learning (p̂l),
negative learning (n̂l), retained learning (r̂l), and zero learning
(1− p̂l− n̂l− r̂l). Positive learning occurs when a student who did
not know the material learned the material in the course of the class.
Negative learning occurs when a student forgets the material in the
course of the class. Retained learning indicates the student knew the
material both times. Zero learning indicates the student never knew
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the material. Figure 1 describes the mapping between student pre-
and post-test performance and the four learning types.

Correct (Post) Incorrect (Post)
Correct (Pre) r̂l n̂l

Incorrect (Pre) p̂l 1− p̂l− n̂l− r̂l

Figure 1: Value-added disaggregation
as described in Walstad and Wagner
(2016).The method outlined by Walstad and Wagner works well in the

context of exams where guessing has a near-zero probability of
success. However, in the context of multiple choice exams, learning
performance is a function of both a latent trait and guessing.15 Specif- 15 Ben O Smith and Jamie Wagner.

Adjusting for guessing and apply-
ing a statistical test to the disag-
gregation of value-added learning
scores. The Journal of Economic Ed-
ucation, 49(4):307–323, 2018. doi:
10.1080/00220485.2018.1500959

ically, γ is true positive learning (adjusted for guessing), α is true
negative learning (adjusted for guessing), and µ is true stock knowl-
edge at the time of the pre-test (adjusted for guessing); true retained
learning is µ − α. Smith and Wagner developed estimates of these
latent traits when properly accounting for guessing.

γ̂ =
ĉi(n̂l + r̂l− 1) + p̂l

(ĉi − 1)2 (13)

α̂ =
ĉi(p̂l + r̂l− 1) + n̂l

(ĉi − 1)2 (14)

µ̂ =
n̂l + r̂l− ĉi

1− ĉi
(15)

Where the raw learning values are as defined by Walstad and
Wagner and ĉi is the probability of guessing correctly. In the con-
text of nationally-normed exams, ĉi can be estimated using the 3PL
and substituted into the above equations. Otherwise, it is usually
assumed that ĉi = 1/k where k is the number of question options.

In terms of instruction/exam diagnostics, α̂ plays an important
role. Ideally, α̂ should converge on zero (similar to how ci should
converge on 1/k in the 3PL model). When it does not, this could be
occurring for one of three reasons: There is a convergence between Smith

and Wagner (2018) and Hake (1998).
Smith and White (2021) show that
γ̂/(1− µ̂) converges to the Hake gain
estimator when α̂ = 0. The Hake
estimator is, therefore, a special case
of the family of guessing-adjusted
estimators.

1. There is an insufficient number of observations and the practi-
tioner is seeing statistical noise.

2. ĉi was assumed to equal 1/k where, in truth, it does not. This
indicates that the exam question is likely suspect and should be
redesigned.

3. The instruction of the underlying content was confusing enough
to result in some students ‘un-learning’ the material. These lesson
plans should be redesigned.

Smith and White16 introduces a gain transformation (γ̂/(1− µ̂)) 16 Ben O Smith and Dustin R White. On
guessing: An alternative adjusted pos-
itive learning estimator and comparing
probability misspecification with monte
carlo simulations. Applied Psychological
Measurement, 45(6):441–458, 2021. doi:
10.1177/01466216211013905

of the above guessing-adjusted estimators and sensitivity test to
determine if the transformed form is more robust.

R =
n̂l + p̂l + r̂l− 1

2p̂l + (n̂l + r̂l− 1)(ĉi + 1)
(16)
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The gain transformation is less sensitive to probability misspecifi-
cation when R is between [−1, 1]. Outside of that range, the original
γ̂ estimator is more robust. The Assessment Disaggregation

software [Smith, 2022] available at
https://www.assessmentdisaggregation.org/
estimates the learning values developed
by Walstad and Wagner (2016), Smith
and Wagner (2018), and Smith and
White (2021) using standard exam/quiz
files.

Rubric-Based Knowledge Measures

The above section discussed techniques to measure learning using a
pre- and post-test. However, many times students are assessed using
projects, presentations, or theses. These are typically graded using
a set of rubric rows. Smith and Wooten17 showed that parameters 17 Ben O Smith and Jadrian J Wooten.

Assessing proxies of knowledge and
difficulty with rubric-based instru-
ments. Southern Economic Journal, 90(2):
510–534, 2023. doi: 10.1002/soej.12658

that characterize the rubric-row difficulty and student’s ability can
be estimated. Specifically, they transform the problem into a special
form of survival function. Consider the following rubric row:

Did not meet any
of the require-
ments

The chosen topic
was on-topic for
the course, but
the literature was
lacking

The literature re-
view was complete
but contained
errors

Full credit

For the student to achieve a score in the third box from the left,
they must have met the requirements of the second box from the left.
Similarly, a student achieving the box on the far right indicates they
met all of the requirements for all other boxes.18 Therefore, one can 18 The box on the far-right is a special

case as the data can be top censored.
The estimation procedure proposed
in the paper takes this into account,
but it is outside the scope of the of this
handout.

express the problem as a probability to fail to achieve the next box
based on rubric-row difficulty and student ability. This probability
is expressed as p(qj, si) = 1/(1 + e−(qj+si)), where qj is rubric row
difficulty and si is student ability. While it is difficult to interpret the
estimates for qj and si directly, one can interpret these estimates by
converting them to the Average Probability of Failure (also known
as Average Logistic) or Average Change in the Probability of Failure
(also known as Average Marginal Logistic). Consider the rubric row
results below:

Rubric Variable E. Value Average Logistic Average Marginal Logistic

1 -1.736 0.073 -0.100

2 0.713 0.383 0.139

3 1.215 0.483 0.246

For instance, examining rubric row 1 reveals an estimated value of
qj of −1.736. Looking at the columns Average Logistic and Average
Marginal Logistic we can see how this estimate translates into prob-
ability. On average, students had a failure rate of about 7% on rubric
row 1 and, all else equal, rubric row 1 was about 10% easier. By con-
trast, rubric row 3 was hard. On average, students had a failure rate
of about 48% and it was about 25% harder, all else equal.

https://www.assessmentdisaggregation.org/


understanding test items – handout 8

Student ability si can be similarly examined but it is probably
more meaningful to examine the entire distribution. For instance in a
large Labor Economics class, the Average Probability of Failure and
Average Change in the Probability of Failure can be seen in the below
figure.
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Average Probability of Failure (p(qj, si))
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(a) Probability of Failure
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(b) Change in Probability of Failure

These distributions of student ability can be used to measure abil-
ity of one group of students in comparison to others (e.g. time trend
data, treatment effects) or comparing the same students’ ability at
two different times. The Project Based Assess-

ment web application at
https://projectassessment.app im-
plements the estimation technique
proposed by Smith and Wooten.

Conclusion

Exam software routinely claim to provide exam analytics. Unfortu-
nately, the analytics provided have often been superseded by more
advanced methods. Fortunately, the more advanced methods, such as
IRT, are built into most statistical packages and Value-Added Learn-
ing Models and Rubric-Based Knowledge Measures are available in
open source statistical packages (R, Python).
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